Joint continuity of separately continuous functions
نویسندگان
چکیده
منابع مشابه
Continuity of super- and sub-additive transformations of continuous functions
We prove a continuity inheritance property for super- and sub-additive transformations of non-negative continuous multivariate functions defined on the domain of all non-negative points and vanishing at the origin. As a corollary of this result we obtain that super- and sub-additive transformations of continuous aggregation functions are again continuous aggregation functions.
متن کاملLebesgue Measurability of Separately Continuous Functions and Separability
A connection between the separability and the countable chain condition of spaces with L-property (a topological space X has L-property if for every topological space Y , separately continuous function f : X ×Y →R and open set I ⊆R, the set f −1(I) is an Fσ-set) is studied. We show that every completely regular Baire space with the L-property and the countable chain condition is separable and c...
متن کاملUniform Continuity of Continuous Functions on Compact Metric Spaces
A basic theorem asserts that a continuous function on a compact metric space with values in another metric space is uniformly continuous. The usual proofs based on a contradiction argument involving sequences or on the covering property of compact sets are quite sophisticated for students taking a first course on real analysis. We present a direct proof only using results that are established a...
متن کامل(metrically) Quarter-stratifiable Spaces and Their Applications in the Theory of Separately Continuous Functions
We introduce and study (metrically) quarter-stratifiable spaces and then apply them to generalize Rudin and Kuratowski-Montgomery theorems about the Baire and Borel complexity of separately continuous functions. The starting point for writing this paper was the desire to improve the results of V.K. Maslyuchenko et al. [MMMS], [MS], [KM], [KMM] who generalized a classical theorem of W.Rudin [Ru]...
متن کاملContinuity of Monotone Functions
Two refractory problems in modern constructive analysis concern real-valued functions on the closed unit interval: Is every function pointwise continuous? Is every pointwise continuous function uniformly continuous? For monotone functions, some answers are given here. Functions which satisfy a certain strong monotonicity condition, and approximate intermediate values, are pointwise continuous. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1981
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1981-0612739-1